IFOAM Standards

Requirements

Introduction Of A New IFOAM Norm

Electronic Membership Vote
Voting Closes on July 28, 2011
Dear IFOAM Members,

One year ago, you decided with 93% approval the revision of the IFOAM Organic Guarantee System. Immediately after the vote, IFOAM started implementation, adapting its policies, calling for new committees that are working on the new normative documents, organizing member consultations, developing new logos, launching the first new services and keeping a steady information flow through the new OGS Courier.

But how to decide who is eligible for the Family of Standards and who is not? The procedure foresees extensive equivalence assessments against a new norm: The ‘IFOAM Standards Requirements’.

The 'IFOAM Standards Requirements' are subject to IFOAM General Assembly approval. Since 2002, IFOAM obtains the approval of its norms through electronic vote. We therefore call for this vote only a few months before the physical General Assembly in Korea.

This brochure explains the proposal and the voting procedure. The World Board invites you to participate in the electronic vote until 28 July 2011, and recommends that you support the approval by voting “yes”.

Organically Yours,

Katherine DiMatteo, President
Markus Arbenz, Executive Director
The World Board’s Motion

With this membership vote, the World Board proposes to ratify the IFOAM Standards Requirements as a new norm and reference for the acceptance or rejection of organic standards into the IFOAM Family of Standards.
IFOAM Policy 20 foresees that all IFOAM Norms are decided by the IFOAM General Assembly. In the last few years it has become common practice to decide on changes to the norms by e-vote. This practice provides all members the opportunity to vote. In this case, the vote is not only about a change in an existing norm, but about the approval or rejection of a new norm that has been drafted from scratch.

The IFOAM Family of Standards is at the core of the new IFOAM Organic Guarantee System. The Family of Standards contains all standards officially endorsed as organic by the Organic Movement, based on their equivalence with the IFOAM Standards Requirements (or internationally referred to as Common Objectives and Requirements of Organic Standards, COROS). Both private standards and government regulations are admissible. To date, 41 private standards and 12 government regulations are included into the Family.

Why This electronic membership vote?

That’s Organic - Worldwide.

The IFOAM Family of Standards contains all standards officially endorsed as organic by the Organic Movement, based on their equivalence with the IFOAM Standards Requirements (or internationally referred to as Common Objectives and Requirements of Organic Standards, COROS). Both private standards and government regulations are admissible. To date, 41 private standards and 12 government regulations are included into the Family.

Why This electronic membership vote?

The IFOAM Family of Standards is at the core of the new IFOAM Organic Guarantee System. The Family of Standards contains all standards officially endorsed as organic by the Organic Movement, based on their equivalence with the IFOAM Standards Requirements (or internationally referred to as Common Objectives and Requirements of Organic Standards, COROS). Both private standards and government regulations are admissible. To date, 41 private standards and 12 government regulations are included into the Family.

Why This electronic membership vote?

The IFOAM Family of Standards is at the core of the new IFOAM Organic Guarantee System. The Family of Standards contains all standards officially endorsed as organic by the Organic Movement, based on their equivalence with the IFOAM Standards Requirements (or internationally referred to as Common Objectives and Requirements of Organic Standards, COROS). Both private standards and government regulations are admissible. To date, 41 private standards and 12 government regulations are included into the Family.

Why This electronic membership vote?
The IFOAM Standards Requirements are a set of objectives against which organic standards can be compared. After the assessment, the strengths and weaknesses of the standards become apparent. This is a precondition to judge whether a standard is equivalent and can therefore be part of the Family of Standards.

Over the past few months, the IFOAM Standards Requirements were developed and they were harmonized with the Common Objectives and Requirements of Organic Standards (COROS), an international norm suggested primarily to governments and developed in partnership by UNCTAD, FAO and IFOAM. IFOAM Standard Requirements have the same content as the COROS. This gives more recognition to the IFOAM Family of Standards, especially for the governments worldwide. The recognition and credibility of our Norms help us get closer to our goal of seeing the Family of Standards become an important legal reference for organic regulations and standards.

The World Board acknowledges the preparatory work of the IFOAM Value Chain Department, the IFOAM Standards Requirement Committee, FAO/UNCTAD and the members that participated in the consultation in March 2011. The World Board considers the final version well-balanced and suitable to serve the purpose of uniting the organic world at the level of regulations and standards.
Links to Additional Information

- Result of the consultation of the IFOAM Standards Requirements
- OGS Brochure in English | Spanish | French
- OGS Courier
 - Issue 1 - November 2010 - Introduction of New OGS
 - Issue 2 - December 2010 - Roadmap for Implementation
 - Issue 3 - January 2011 - Launch of the IFOAM Family of Standards
 - Issue 4 - January 2011 - IFOAM Norms Consultation
 - Issue 5 - February 2011 - Launch of OGS Logos
 - Issue 6 - March 2011 - Feedback from BioFach 2011

Forum

A discussion forum open to all IFOAM Members will be moderated by Thomas Cierpka at http://ifoamogs.wordpress.com/.

Webinars

In two webinars on July 12, 2011 you will have the opportunity for a Q&A session with Markus Arbenz. To register, please send an e-mail before July 5, 2011 to administrator@ifoam.org.

Webinar 1: at 9:00 a.m. Central European Time (GMT+2)
Webinar 2: at 5:00 p.m. Central European Time (GMT+2)

Submitting your Vote

Members can log in at www.surveymonkey.com/s/ifoamsrvote2011 to vote on the following question:

Do you agree with the approval of the IFOAM Standards Requirements?

Yes, I approve No, I reject

Voting is open to IFOAM Members starting June 16, 2011 and ending July, 28 2011. The registration number required at log-in is your Membership ID, included in the e-mail you received with this document.

Votes cast by fax, e-mail, regular mail or in person are also valid. Name, Membership ID and a clear indication of Yes or No must be included. Please send your fax to +49 228 926 5099.

Assistance

For content-related matters, please contact Markus Arbenz at m.arbenz@ifoam.org.

For questions on submitting your vote, please contact Martin Pairet at m.pairet@ifoam.org.
Common Objectives and Requirements of Organic Standards (COROS) – IFOAM Standards Requirements

Introduction
Organic Agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic Agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved. The system is often further described by standards, which govern labeling and claims for organic products. A large number of standards have proliferated all over the world as a result of private and public initiatives to provide labeling and consumer assurance in both private and government contexts. There is now a need to support trade of organic products by finding ways and means of assessing the equivalence of organic standards.

Development
The Common Objectives and Requirements of Organic Standards (COROS) was developed as a joint venture of the IFOAM Organic Guarantee System (OGS) and the GOMA (Global Organic Market Access) project undertaken by FAO, IFOAM and UNCTAD. The concept of COROS was first developed by the International Task Force on Harmonization and Equivalence (ITF) through the Annex of the Guide for assessing Equivalence of Organic Standards and Technical regulations (EquiTool) in 2008 (www.goma-organic.org). The document was compiled on the basis of the IFOAM Basic Standards and Codex Alimentarius as the two pre-existing international reference organic standards, and through the review of a significant number of existing standards and regulations across the world.

Scope and Content
The COROS articulates the broad objectives which the production rules in organic standards and regulations commonly seek to achieve, and presents the common detailed requirements that relate to these various objectives. The COROS contains only requirements that were commonly found in organic standards and regulations globally. The COROS includes production requirements related to general organic management, crop and animal production, beekeeping, processing and handling and social justice. Organic aquaculture, textile processing and cosmetics are not included in the scope of the COROS, primarily due to the fact that these are emerging scopes that are currently not yet covered by the majority of organic standards and regulations.

Purpose
The COROS is intended for use in international equivalence assessments of organic standards and regulations. As an annex
to the EquiTool developed by the International Task Force on Harmonization and Equivalence (ITF), it is proposed as a template to guide governments and other stakeholders in conducting objective-based equivalence assessments of two or more organic standards or regulations. In the context of the IFOAM Organic Guarantee System, it serves as the IFOAM Standards Requirements: the international reference against which all organic standards and regulations will be assessed against, for the purpose of inclusion in the IFOAM Family of Standards. Equivalence assessment of all standards against the COROS will be conducted by IFOAM following its policies and procedures available on www.ifoam.org, and the results will be made available to the public within the frame of the IFOAM Family of Standards. Governments are encouraged to use the Family of Standards as a basis for granting equivalence to other organic standards and regulations for the purpose of regulating imports. Hence the IFOAM Family of Standards is intended to become a voluntary tool for international multi-lateral equivalence agreements between governments or between private standard owners. Governments may also use the equivalence assessments done by IFOAM against the COROS as a basis to facilitate their own unilateral or bilateral decisions on equivalence.

Structure and Functioning of the COROS
The highest degree of functionality of the COROS is provided in the form of an electronic spreadsheet containing three sheets:

• The first sheet is proposed as a data entry sheet: requirements of the COROS are laid out following the most classical structure of organic standards. For each requirement, the person or group performing the assessment can enter the corresponding requirement in the assessed standard, and a judgment on whether the requirement is equivalent, additional (positive variation) or absent/incomplete (negative variation). The evaluation matrix also contains space for the owner of the assessed standard to provide justification for the observed variations to the COROS if appropriate, and for the assessors to place comments and to agree (or not) with the justification provided.

• All this data is automatically fed into the second sheet that reorganizes this analysis according to the broader objectives that the requirements help to achieve. Hence the second sheet enables the assessor to look at the equivalence assessment results from an Objective-based angle and to judge how well the assessed standard is addressing the various Common Objectives of Organic Standards and Regulations.

• Finally, a third sheet is provided to help the assessors summarize the results of the equivalence assessment for the purpose of making the final decision and communicating with other parties or the public. The summary should provide a quick view of the strength and weaknesses of the assessed standard as compared to the COROS.

Approval and Maintenance of the COROS
The draft COROS underwent one round of public consultation in late 2010, and another early in 2011. All comments were reviewed and taken into account prior to approval by the GOMA Steering Committee on one hand and by the IFOAM General Assembly on the other.

The first edition of the COROS will be published by IFOAM, FAO and UNCTAD under a revised edition of the EquiTool (www.goma-
The COROS reflects the status of organic standards and regulations at the time it was developed (2010-2011). Organic standards and regulations are however not static, and issues that were not commonly included in standards in 2010-11 might become common requirements after a few years. The COROS will therefore be maintained and updated as necessary by IFOAM within the frame of its Organic Guarantee System. Revision of the COROS will be done following the IFOAM Policies and Procedures related to the revision of the IFOAM Norms (see www.ifoam.org/ogs).

Main Objectives and Detailed Requirements of the COROS

OBJECTIVE 1: Organic management is long-term, ecological and systems-based.

1.1 All Farming Management Systems
Organic management does not rely upon switching back and forth between organic and conventional management.

1.2 Crop Production Management Systems
Organic crop production systems conserve or improve the soil’s structure, organic matter, fertility and biodiversity.

Organic crop production management includes a diverse planting scheme as an integral part of the system of the holding. For perennial crops, this includes plant-based ground cover. For annual crops, this includes diverse crop rotation practices, cover crops (green manures), intercropping or other diverse plant production with comparable achievements.

Organic crop production management employs interrelated positive processes and mechanisms for the management of pests, diseases, and weeds. These include but are not limited to site and crop adapted fertility management and soil cultivation, choice of appropriate varieties, enhancement of functional biodiversity, and in case additional measures are required, restricted use of crop protectants and growth regulators.

Organic crop production systems produce terrestrial crops in soil-based systems.

1.3 Livestock Systems
Organic operations producing livestock integrate crop and animal production at the farm or regional scale.

1.4 Wild Collection Management Systems
Organic collection management ensures that collection does not exceed sustainable yield of the collected species or otherwise threaten the local ecosystem.

Organic operators collect products only from within the boundaries of the clearly defined wild collection area.

1.5 Transition/Conversion Requirements for Systems of Organic Production:
Organic guarantee systems clearly identify when organic practices begin and how long they are applied before the operation and products can be considered organic. This
may include specific conditions for simultaneous transition/conversion of land and animals.

Organic guarantee systems require a period of time that is suitable for allowing the establishment of healthy soils and sustainable ecosystems before deeming a crop organic.

- Common minimum time periods:
 a. organic management for at least 12 months for annuals and 18 months for perennials.
 b. the absence of any inputs that do not accord with organic principles and applicable standards for at least 36 months.

Organic guarantee systems require that animal production systems raise animals organically from birth or hatching, or when this is not possible from early ages subject to a minimum transition/conversion requirement.

- Common minimum transition/conversion requirements:
 - dairy – 90 days; eggs and poultry meat – 42 days; other meat – 12 months; bee colonies – time needed for wax replacement with minimum twelve months.

Organic beekeeping introduces bees coming from organic production units when available.

OBJECTIVE 2: Soil fertility is long-term and biologically-based.

2.1 Soil Fertility Management

Organic crop production systems enhance soil primarily by incorporating manures and other biodegradable inputs, and/or by nitrogen fixation from plants.

Organic soil fertility management uses only naturally occurring mineral fertilizers and only as a supplement to biologically-based fertility methods.

Organic crop production does not use sodium (Chilean) nitrate.

Organic guarantee systems restrict land preparation by burning vegetation.

OBJECTIVE 3: Synthetic inputs at all stages of the organic product chain and exposure of people and the environment to persistent, potentially harmful chemicals are avoided/minimized.

3.1 Crop Production

Organic soil fertility management uses only crop fertility substances that are on (a) list(s) referenced by the standard. Such lists are based on lists and/or criteria in international organic standards.

Organic soil fertility management does not use synthetic fertilizers or fertilizers made soluble by chemical methods, e.g. superphosphates.

Organic crop production uses only active substances for pest/disease/growth management that are on (a) list(s) referenced by the standard. Such lists are based on lists and/or criteria in international organic standards.

Organic crop production ensures that co-formulants (e.g. inerts and synergists) in formulated farm input products are not carcinogens, mutagens, teratogens or neurotoxins.
Organic soil fertility management does not use human excrement on crops for human consumption without measures to protect humans from pathogens.

3.2 Animal Production

Organic animal management does not use any of the following synthetic feed rations: amino acids (including isolates), nitrogen compounds (e.g. urea), growth promoters, stimulants, appetizers, preservatives, coloring agents, or any solvent-extracted substance.

Organic animal management provides animals with vitamins, trace elements and supplements only from natural sources unless they are not available in sufficient quantity and/ or quality.

Organic animal management does not practice any prophylactic use of synthetic allopathic veterinary drugs.

Organic animal management strictly limits use of antibiotic and other allopathic chemical veterinary drugs for animals to the treatment of illness and injuries under the supervision of qualified personnel, and subject to defined withdrawal periods.

- Common withdrawal period: at least twice the legislated withdrawal period or 48 hours, whichever is longer.

When veterinary medical products are administered to bees, conversion requirements apply.

Organic beekeeping disinfects hive and honeycomb only through methods and substances that are on (a) list(s) referenced by the standard. Such lists are based on lists and/or criteria in international organic standards.

Organic beekeeping does not use synthetic chemical bee repellents.

Organic beekeeping minimizes use of smoke and uses only natural smoking materials.

3.3 Processing

For food and feed production, organic processing uses only processing methods that are biological and physical in nature.

Organic processing uses only additives, processing aids, other substances that modify organic products and solvents used for extraction if they that are on (a) list(s) referenced by the standard. Such lists are based on lists and/or criteria in international organic standards.

3.4 Contamination: All Systems

Organic management takes precautionary measures to avoid contamination (commonly this includes barriers/buffers in production, cleaning of farm equipment, separation and cleaning in processing).

Organic processing management identifies and minimizes risks of product contamination.

Organic collection management ensures that wild collection areas are not compromised by improper treatment or environmental pollution.

Organic beekeeping management places hives on organically managed fields or wild/natural areas with sufficient separation from conventional fields and other pollution sources, and in a way that minimizes the risk of contamination.
OBJECTIVE 4: Pollution and degradation of the production/processing unit and surrounding environment from production/processing activities are minimized.

4.1 Farm Production and Beekeeping

Organic management maintains or enhances biodiversity in crop and non-crop habitats on the farm holding.

Organic crop production systems employ measures to prevent land degradation, such as erosion and salinization.

Organic soil fertility management prevents pollution of the environment, including land and water, by inputs and practices.

Organic management ensures that water resources are used sustainably.

Organic management does not undertake any actions that negatively impact high conservation value areas.

Organic guarantee systems restrict use of synthetic coverings and mulches in organic production systems.

Organic animal management systems manage stocking density to ensure sustainable land and water use.

OBJECTIVE 5: Certain unproven, unnatural and harmful technologies are excluded from the system.

5.1 Genetically Modified Organisms

Organic management systems do not use genetically modified organisms (GMO) or their derivatives, except vaccines, in all stages of organic production and processing.

5.2 Irradiation

Organic processing does not use irradiation (ionizing radiation) technologies.

5.3 Breeding Techniques

Organic animal management uses only breeding techniques consistent with organic production methods. This includes artificial insemination but excludes embryo transfer techniques and cloning.

Organic animal management does not use hormones to induce ovulation or birth, unless for medical reasons.

5.4 Nanotechnology (this aspect is increasingly being covered by organic standards but is still new and mostly non-covered by regulations)

Organic production and processing systems do not intentionally manufacture or use nanomaterials.

OBJECTIVE 6: Animals are treated responsibly.

6.1 Living Conditions

Organic animal management systems ensure that living conditions (including housing) provided to animals:

- afford them comfort and safety
- allow them to exhibit natural behavior
- give them freedom of movement
- allow access, whenever weather allows, to pasture, open air and/or exercise areas, including shade.
6.2 **Physical alterations**

Organic animal management does not generally perform physical alterations on animals.

- Standards may allow specific exemptions when good management practices are insufficient to ensure the health and welfare of the animal and/or operator or when it is specifically required for meat quality. Physical alterations performed under exceptions employ measures to minimize suffering.

Organic beekeeping does not clip the wings of queen bees.

6.3 **Breeding**

Organic animal management uses breeds that reproduce successfully under natural conditions and without routine human involvement.

6.4 **Transport and Slaughter**

Organic animal management avoids animal stress and suffering during the movement, handling and slaughter of animals.

- Does not use any injurious devices such as electric prods, and tranquilizers and stimulants.

Organic beekeeping does not deliberately kill bees during honey harvesting.

OBJECTIVE 7: The natural health of animals is promoted and maintained.

7.1 **Nutrition**

Livestock Production:

Organic animal management systems provide a weaning period for young mammals, which is based on the natural behavior of the species.

Organic animal management includes feed rations that meet the nutritional and dietary requirements of the species, for example access to roughage for ruminants.

Organic animal management does not feed animals slaughter products of the same species or any type of excrements, and does not feed slaughter waste to ruminants.

Beekeeping:

Organic beekeeping management ensures that harvesting methods provide sufficient food reserves left behind for the survival of the colony during the dormancy period.

In cases of temporary feed shortages, organic beekeeping provides supplementary feed that is organic.

7.2 **Health Care**

Livestock production:

Organic animal management systems follow the principle of positive health, which consist of a graduated approach of prevention (including vaccinations and anti-parasite treatments only when essential), then natural medicines and treatment, and finally if unavoidable, treatment with allopathic chemical drugs.
Organic animal management never withholds medical treatment considered necessary for the welfare of an animal in order to maintain the organic status of the animal.

Beekeeping:
Organic beekeeping management achieves health and welfare of bee colonies primarily through good management and hygienic practices, followed if necessary by phytotherapeutic and/or homeopathic treatments, and then by substances that are on a list referenced by the standard. Such lists are based on lists and/or criteria in international organic standards.

OBJECTIVE 8: Organic integrity is maintained throughout the supply chain.

8.1 Crop Production
Seeds and Planting Material:
Organic crop production uses organic seed and planting materials unless such seed and materials are unavailable.
Organic crop production systems non-chemically treated seeds and planting materials whenever available.

Parallel and Split Production:
Organic management completely and clearly separates the non-organic and organic parts and products of holdings with split or parallel production, e.g. physical barriers, management practices, storage of inputs and products.

8.2 Animal Production
Organic animal management takes measures to ensure the organic integrity of animals during movement, handling and slaughter.
Organic animal management limits the use of non-organic feed to non-accessibility of organic feed and organic guarantee systems apply time limits or review periods to its use.

8.3 Processing and Handling
Organic processing management takes measures to prevent co-mingling of organic products with non-organic products in processing, packaging, storage and transport.
Organic processing uses only organic ingredients except for when they are not available.
Organic processing never uses the same ingredient in both organic and non-organic form in a single product.
Organic processing only uses minerals (including trace elements), vitamins, essential fatty, amino acids, and other isolated nutrients when their use is legally required or strongly recommended in the food products in which they are incorporated.
Organic management employs only those systems for cleaning and disinfecting surfaces, machinery and processing facilities that prevent contamination of organic product.
Organic processing management systems control pests according to a hierarchy of practices starting with prevention, and then physical, mechanical, biological methods and substances that are on (a) list(s) referenced by the standard.
Such lists are based on lists and/or criteria in international organic standards. Where these practices are not effective, and other substances are used, they do not come into contact with the organic product.

Organic processing restricts disinfecting and sanitizing substances that may come in contact with organic products to water and substances that are on (a) list(s) referenced by the standard. Such lists are based on lists and/or criteria in international organic standards. In cases where these substances are ineffective and others must be used, organic processing ensures that these other substances do not come into contact with any organic products.

Organic processing ensures that packaging and storage/transportation containers do not contaminate the organic product they contain.

OBJECTIVE 9: Organic identity is provided in the supply chain.

Labeling fully discloses ingredients, including whether or not they are organic.

Labeling identifies the person or company legally responsible for the product and the body that assures conformity to the applicable organic standard.

Claims that processed products are “organic” are made only if the product contains at least 95% organic ingredients (by weight excluding water and salt).

Claims that processed products are “made with organic ingredients” or similar terms are made only if the product contains at least 70% organic ingredients (by weight excluding water and salt).

Labeling does not make “organic” or “made-with organic ingredients” or similar terms, or make any organic certification claims on products with less than 70% organic ingredients (by weight excluding water and salt), although ‘organic’ may be used to characterize ingredients on the list of ingredients.

Labeling clearly distinguishes in-conversion products or similar terms from organic products.

OBJECTIVE 10: Fairness, respect and justice, equal opportunities and non-discrimination is afforded to employees and workers

*** this objective is commonly addressed in private standards although not usually in the scope of government organic standards.

Organic operations in countries where social legislation is not in place or not enforced have social policies in place. Such policies should be in accordance with the International Labor Organization’s Declaration on Fundamental Principles and Rights at Work.

Organic operations ensure that employees and contracted workers have the freedom to associate, the right to organize and the right to bargain collectively.

Organic operations provide all employees and contractors with equal opportunities and do not subject them to discrimination.

Organic operations do not violate human rights and they provide fair working conditions for employees and contracted workers.
Organic operations do not use any type of forced or involuntary labor.

Organic operations guarantee the integral well-being of any children who work in the operation.

Additional assessment (related to Objective 3 mainly):

Lists of Substances:

Compare list of approved substances in the standard with lists in a reference international standard. Is it overall equivalent? (Also look for allowed/prohibited substances in the body of the standards)

Criteria for Lists of Substances:

Compare criteria for the inclusion of substances used by the standard setter with criteria in the COROS (these may be criteria of the standard setter or international criteria). Is it equivalent?

Definitions

Additive: A substance that is added to a processed product for a technological purpose and becomes a component of the final product and/or affects its characteristics.

Biodiversity: The variety of life forms and ecosystem types on Earth. Includes genetic diversity (i.e. diversity within species), species diversity (i.e. the number and variety of species) and ecosystem diversity (total number of ecosystem types).

Breeding: Selection of plants or animals to reproduce and/or to further develop desired characteristics in succeeding generations.

Certification: The procedure by which an operator or a group of operators received written and reliably endorsed assurance that a clearly identified process has been methodically applied in order to assess that the operator is producing specified products according to specific requirements or standards.

Contamination: Contact of organic crops, animals, land or products with any substance that would compromise the organic integrity.

Conventional: Any production or processing practice or system that does not conform to organic production practices and standards.

Conversion: The time of transition from non-organic to organic farming.

Crop Rotation: The practice of alternating the species or families of annual and/or biennial crops grown on a specific field in a planned pattern or sequence so as to break weed, pest and disease cycles and to maintain or improve soil fertility and organic matter content.

GMO Derivative: A substance that is produced by or from a GMO. This is traced one step back from the substance to its source. ‘Produced from GMO’ means that it consists in whole or in part of a GMO. ‘Produced by GMO’ means that it is a GMO metabolite.

Disinfect: To reduce, by physical or chemical means, the number of potentially harmful microorganisms in the environment to a level that does not compromise food safety or suitability.

Holding: The total area of land under control of one farmer or collective of farmers, and including all the farming activities or
enterprises. The farm holding may consist of one or more farm units.

Genetic Engineering: Genetic engineering is a set of techniques from molecular biology (such as recombinant DNA) by which the genetic material of plants, animals, microorganisms, cells and other biological units are altered in ways or with results that could not be obtained by methods of natural mating and reproduction or natural recombination. Techniques of genetic engineering include, but are not limited to: recombinant DNA, cell fusion, micro and macro injection, encapsulation. Genetically engineered organisms do not include organisms resulting from techniques such as conjugation, transduction and natural hybridization.

Genetically Modified Organism (GMO): A plant, animal, or microbe that is transformed by genetic engineering.

Green Manure: A crop that is grown and then incorporated into the soil for the purpose of soil improvement, prevention of erosion, prevention of nutrient loss, mobilization and accumulation of plant nutrients, and balancing soil organic matter. Green manure may include spontaneous crops, plants or weeds.

Habitat: The area over which a plant or animal species naturally exists. Also used to indicate types of habitat, e.g. ocean, seashore, riverbank, woodland, grassland.

High Conservation Value Areas: Areas that have been recognized as having outstanding and critical importance due to their environmental, socioeconomic, biodiversity or landscape values.

Homeopathic Treatment: Treatment of disease based on administration of remedies prepared through successive dilutions of a substance that in higher concentration produces symptoms in healthy subjects similar to those of the disease itself.

Ingredient: Any substance, including an additive, used in the manufacture or preparation of a product and present in the final product although possibly in a modified form.

Irradiation: Technology using high-energy emissions from radio-nucleotides, capable of altering a product’s molecular structure for the purpose of controlling microbial contaminants, pathogens, parasites and pests in products (generally food), preserving products or inhibiting physiological processes such as sprouting or ripening. (Also referred to as ionizing radiation although definitions of this term in technical and legal texts vary.) Irradiation does not include low-level radiation sources such as the use of X rays for foreign body detection.

Nanomaterials: substances deliberately designed, engineered and produced by human activity to be in the nanoscale range (approx 1-300 nm) because of very specific properties or compositions (e.g. shape, surface properties, or chemistry) that result only in that nanoscale. Incidental particles in the nanoscale range created during traditional processing methods such as homogenization, milling, churning, and freezing, and naturally occurring particles in the nanoscale range are not intended to be included in this definition.

Operation: For the purposes of this document an operation is an individual or business enterprise producing, processing or handling agricultural products.

Organic Product: A product that has been produced, processed, or handled in compliance with organic standards.
Parallel Production: A situation where the same operation is producing visually indistinguishable products in both an organic system and a non-organic system. A situation with “organic” and 'in conversion' production of the same product may also be parallel production.

Processing: The handling, treatment, transformation or packaging of agricultural or wild collected products.

Processing Aid: Any substance used in the processing of a product to fulfill a technical purpose and which is not normally a constituent of the product. This includes filtration auxiliaries.

Restrict: Limit a practice, generally to conditions under which it may be used.

Sanitizing: Any treatment that is effective in destroying or substantially reducing the numbers of vegetative cells of microorganisms of public health concern, and other undesirable microorganisms.

Split Production: Conventional, in conversion and/or organic production, breeding, handling or processing in the same operation.

Synthetic: A substance that is formulated or manufactured by a chemical process or by a process that chemically changes a substance extracted from naturally occurring plant, animal, or mineral sources. Substances created by naturally occurring biological processes are not considered synthetic.

Standards: Norms that specify how a product should be produced and processed. For the purposes of this document standards are used to define organic production practices.

Sustainable: Use of a resource in such a way that the resource is not depleted or permanently damaged, hence is not used faster than it can be regenerated.

CRITERIA for Substances Used in Organic Production and Processing

These basic criteria will facilitate the equivalence assessment of lists of substances, which, although they may differ, should be able to be justified against set criteria. These criteria summarize criteria that are presented in two international standards, the IFOAM Standards and the Codex Alimentarius Organic Guidelines. Standard setting bodies should at minimum use the following criteria when evaluating substances for inclusion in their standards.

General Criteria

All substances used in organic production and processing should meet the following criteria:

i. use of the substance is consistent with the principles and objectives of Organic Agriculture

ii. the substance is necessary/essential for its intended use.

iii. approved alternatives are not available in sufficient quantity and/or quality

iv. manufacture, use and disposal of the substance does not result in, or contribute to harmful effects on the environment

v. The substance has the lowest negative impact on human or animal health or the environment when compared to alternative substances.

vi. * the consumer is not deceived concerning the nature and quality of the substance

vii. * consideration is given to social and economic impacts of sourcing and manufacturing the substance.

* commonly and primarily used in the private sector for evaluating substances
In addition, the following criteria should be applied in the evaluation process:

a. if the substance is used for fertilization and/or soil conditioning purposes:
 - it is essential for obtaining or maintaining the fertility of the soil or to fulfill specific nutritional requirements of crops, or specific soil-conditioning and rotation purposes which cannot be satisfied by other organic fertility practices.
 - the ingredients are of biological or mineral origin and may have undergone the following processes: physical (e.g., mechanical, thermal), enzymatic, microbial (e.g., composting, fermentation).

 Synthetic nature identical products that are not available in sufficient quantity and quality in their natural form may be allowed provided all other criteria are satisfied.
 - use does not have a harmful impact on the balance of the soil ecosystem or the physical characteristics of the soil, or water and air quality.
 - use may be restricted to specific conditions, specific regions or specific commodities.

b. if the substance is used for plant protection, growth regulation or weed control:
 - it must be essential for the control of a harmful organism or a particular disease for which other biological, physical, or plant breeding alternatives and/or other management practices consistent with the standard are not effective.

 - it has the least harmful impact (compared to alternatives) on the environment, the ecological balance (in particular non-target organisms) and the health of consumers human, livestock, aquatic animals and bees.
 - substances must be of biological or mineral origin and may undergo the following processes: physical (e.g. mechanical, thermal), enzymatic, microbial (e.g. composting, fermentation);

 Synthetic substances may be used by exception such as the use in traps or dispensers, or substances that do not come into direct contact with produce, or those for which no natural or nature identical alternative is available provided that all other criteria are met.
 - use may be restricted to specific target organisms, conditions, specific regions or specific commodities;

b. if the substance is used as an additive and/or processing aid in the preparation or preservation of the product:
 - it must otherwise be impossible to produce or preserve the product

 The substance is found in nature, and may have undergone mechanical/physical processes (e.g. extraction, precipitation), biological/enzymatic processes and microbial processes (e.g. fermentation).

 Synthetic nature identical products that are not available in sufficient quantity and quality in their natural form may be allowed provided all other criteria are satisfied.